
NDN-CNL: A Hierarchical Namespace API
for Named Data Networking

Jeff Thompson, Jeff Burke, Peter Gusev
ACM ICN 2019, Macao, China, Sept 24-26

Overview

•NDN Background skipped
• Rationale
• Design
• Implementation
• Examples
• Future Work

29/26/19

• Write data-centric apps without focusing
on Interest/Data mechanics.

• Compose data-centric approaches:
segmentation, compound objects,
schematized trust, NAC, etc.

• Incorporate sync as first-class capability:
keep namespaces updated and enable more
flexible local manipulations.

• Align app design with named data design.

ccnx C ccnx Java

PyCCN

ndn-cxx NDN-CCL

Consumer/Producer

NDN-CNL

sockets

Wishes for a new NDN API

9/26/19 3

NDN-CNL Goals

• Provide a collection-oriented interface to NDN data

• Enable consistent manipulation of both app-level objects
and data packets

• Employ only a small set of core features

• Minimize loss of generality relative to NDN-CCL

9/26/19 4

/foo/someimage
mutable image object with a “latest version”

/foo/someimage/v42
an immutable version

/foo/someimage/v42/<segment>
encoding detail

foo

someimage

v41 v42 v43

%00%00 %00%01 %00%02

9/26/19 5

Observation # 1

Prefixes often map to ADUs

bar baz

...

... ...

...

Producer / Consumer Symmetry

• Both need to be told the name of new objects

• Vary in ways to learn a name
• Create a new object
• Have part of a name and construct the rest
• Overhear a name in a packet
• Receive announcements over name sync

9/26/19 6

Observation # 1

Always wanted to enumerate names…

• Then, could apply wildcard/regexp matching

• And borrow from query languages like XPath (W3C std)

9/26/19 7

Observation # 3

CNL Approach: Namespace API
• Apps manipulate a local tree of names.

Changes propagated to/from the net.
• Apps interact with nodes using

application data structures deserialized
from network objects (strings,
dictionaries, etc.) or packet-granularity
payloads.
• Each node can have handlers that

serialize/deserialize, sign/verify,
encrypt/decrypt its children.
• Asynchronous programming model,

with common states managed by the
library for consistency and simplicity.

9/26/19 8

foo

someimage

v41 v42 v43

%00%00 %00%01 %00%02

NAME	
EXISTS	

INTEREST	
EXPRESSED	

DATA	
RECEIVED	

DECRYPTING	

OBJECT	
READY	

OBJECT	
READY	BUT	

STALE	

VALIDATING	
(ALL)	

VALIDATE	
SUCCESS	

(ANY)	
VALIDATE	
FAILURE	

WAITING	
FOR	DATA	

(ANY)	
DECRYPTION	

ERROR	

(ANY)	
INTEREST	
TIMEOUT	

(ANY)	
INTEREST	
NETWORK	
NACK	

PRODUCING	
OBJECT	

ENCRYPTING	

(ANY)	
ENCRYPTION	

ERROR	

SIGNING	

(ANY)	
SIGNING	
ERROR	

objectNeeded()	 SERIALIZING	

serializeObject()	

DE-
SERIALIZING	

If	an	aggregate	object	
with	versioning,	for	

example	

To	objectNeeded()	

An	OnObjectNeeded	
answers	true	

All	OnObjectNeeded	
answer	false	

Reply	to	pending	
incoming	Interests	

Namespace	state	

Namespace	method	call	

Validation	state	
Not	implemented	(TBD)	

9/26/19 9

Use a common state machine to enhance composability

Simple Example – Fetch Segmented Content

face = Face()

image = Namespace("/foo/someimage/42") # immutable version 42

image.setFace(face)

def onSegmentedObject(handler, obj):

print("Got image")

SegmentedObjectHandler(image, onSegmentedObject).objectNeeded()

9/26/19 10

Typical Consumer
1. App registers to respond to state change, calls objectNeeded()
2. CNL sends Interest and receives Data
3. CNL attaches Data to the node, sets state to OBJECT_READY
4. App gets state changed callback for OBJECT_READY

NAME
EXISTS

INTEREST
EXPRESSED

DATA
RECEIVED

DE-
CRYPTING

(ANY)
DECRYPTION

ERROR

(ANY)
INTEREST
TIMEOUT

(ANY)
INTEREST
NETWORK

NACK

objectNeeded()

DE-
SERIALIZING

OBJECT
READY

9/26/19 11

Producer
1. App registers to respond to objectNeeded() on a node (or subtree)
2. CNL receives an Interest, calls objectNeeded() on its name node
3. App responds that it can produce the object, CNL waits
4. App attaches Data packets the Namespace => OBJECT_READY
5. CNL uses attached Data packets to reply to pending interests

OBJECT
READY

PRODUCING
OBJECT

EN-
CRYPTING

(ANY) EN-
CRYPTION

ERROR

SIGNING

(ANY)
SIGNING
ERROR

Reply to pending
incoming
Interests

objectNeeded() SERIALIZING

serializeObject()

An
OnObjectNeeded

answers true

9/26/19 12

Unified Consumer and Producer
• CCL/cxx: consume with expressInterest(), produce with

registerPrefix()

• Unified: objectNeeded()
• If the app calls objectNeeded(), it is a consumer
• If the app responds to objectNeeded(), it is a producer
• If the Namespace tree already has the object, it acts as a cache

• Apps can employ the Namespace as:
• Cache - CNL receives an Interest; Namespace already has immutable

Data attached; CNL replies
• Workspace - One part of app calls objectNeeded(), another part

produces and attaches Data

9/26/19 13

Handlers
• Assigned to a prefix node to handle child Data packets

• For app, provide structured application objects
• E.g., generalized object ContentMetaInfo
• “Object ready”, not “Data packets ready”

• For network, execute naming and payload conventions
• Segmented content, versioned objects, latest data retrieval, serialize/deserialize

• Goal: Composability, supporting mulitiple handlers to the same node
• E.g., one for segmenting, another for application-specific serialization
• More easily support security: “Mix in” a standardsecurity handler with other handlers

9/26/19 14

Implementation Examples

9/26/19 15

Implementation

• Built on the Common Client Library (CCL)

• Implemented in C++ and Python
• Heavy use of callbacks (standard mechanism for each language)

• Applied in AR, video streaming, repo sync apps

• Experience lead us to a single callback for all node state
changes

9/26/19 16

Generalized Object Stream
• Real-time Data Retrieval (RDR) with _latest packet

• Fixed-size Interest pipeline in current impl.

• If timeout, restart with RDR

Generalized Object Namespace

<seq #>

...

<stream_prefix>

_latest

...

<version #>

<stream_prefix>/<seq#>

_meta _manifest

...

%00%00

...

%00%01

... ...

9/26/19 17

GObjStream Producer
face = Face()
keyChain = KeyChain()
face.setCommandSigningInfo(keyChain,

keyChain.getDefaultCertificateName())

stream = Namespace("/ndn/stream/run/28/annotations", keyChain)
stream.setFace(face,

lambda prefix: print("Register failed: " + prefix.toUri()))

handler = GeneralizedObjectStreamHandler(stream)
handler.addObject(Blob(”Payload 1"), "text/html")
handler.addObject(Blob(”Payload 2"), "text/html”)
…
9/26/19 18

GObjStream Consumer
face = Face()

stream = Namespace("/ndn/stream/run/28/annotations")

stream.setFace(face)

def onNewObject(seqNumber, contentMetaInfo, objectNamespace):

print("Got seq# " + str(seqNumber) + ": " +

str(objectNamespace.obj))

GeneralizedObjectStreamHandler(stream, 10, onNewObject).objectNeeded()

9/26/19 19

Many-to-Many Namespace Updates w/ Sync
• CNL Namespace API supports sync + local search

• Currently implemented: PSync
• Enable sync on a node in the Namespace tree to a certain depth

• Depth limitation: E.g., announce new versions, but not child segments

• Repo usage integrated
• Producer joins repo sync namespace, announces names to be fetched / stored

9/26/19 20

PSync Example
face = Face()

keyChain = KeyChain()
face.setCommandSigningInfo(keyChain, keyChain.getDefaultCertificateName())

applicationPrefix = Namespace("/test/app", keyChain)
applicationPrefix.setFace(face)
userPrefix = applicationPrefix["alice"] # or "bob"

def onStateChanged(nameSpace, changedNamespace, state, callbackId):
if (state == NamespaceState.NAME_EXISTS and

not userPrefix.name.isPrefixOf(changedNamespace.name)):
print("Received " + changedNamespace.name.toUri())

applicationPrefix.addOnStateChanged(onStateChanged)
applicationPrefix.enableSync()
userPrefix["v1"]._setObject(Blob("content1"))

userPrefix["v2"]._setObject(Blob("content2"))

9/26/19 21

Local Eval of Wildcards on Sync’d Names
applicationPrefix = Namespace(Name("/test/app/users"), keyChain)

applicationPrefix.setFace(face,

lambda prefix: dump("Register failed for prefix", prefix))

applicationPrefix.enableSync() # Sync with other instances using this
namespace

... Since the Namespace object childComponents is iterable, enumerate simply
elsewhere -

regex = re.compile("Bob.*")

for child in filter(lambda c: regex.match(str(c)),
applicationPrefix.childComponents):

applicationPrefix[child].objectNeeded(True) # generate interests to
retrieve

9/26/19 22

Name-based Access Control
• The API for NAC defines DecryptorV2
• Key chain with consumer’s private key

• Consumer calls Namespace method setDecryptor(decryptor)

• If supplied, the decryptor is used in the state machine

• See example to add encryption to the
SegmentedObjectHandler:
• https://github.com/named-data/PyCNL/blob/master/examples/test_nac_producer.py
• https://github.com/named-

data/PyCNL/blob/master/examples/test_nac_consumer.py

9/26/19 23

https://github.com/named-data/PyCNL/blob/master/examples/test_nac_producer.py
https://github.com/named-data/PyCNL/blob/master/examples/test_nac_consumer.py

Future Work
• How to best propagate packet-level events to higher-level objects?

• timeouts, validation failure, expired freshness, etc.
• How to combine handlers and prevent/identify conflict
• Storage integration

• Optimize performance as a memory content cache
• Integrated persistent storage/repo functionality
• “Swap to disk” of content to save memory

• Maintain statistics on higher-level prefix nodes
• Interest retransmission, RTT, segment fetching progress/rate

9/26/19 24

Thank you!

• Thanks to Lixia Zhang and Alex Afanasyev for input on the CNL
• Thanks to Ashlesh Gawande for help integrating Psync
• Thanks to our shepherd, John Wroclawski

• Code
• Python: https://github.com/named-data/PyCNL
• C++: https://github.com/named-data/cnl-cpp

9/26/19 25

https://github.com/named-data/PyCNL
https://github.com/named-data/cnl-cpp

